FerroMag^{тм} 10 nm PEG Stabilized Iron Oxide (II, III) Magnetic Nanoparticles

95 Horseblock Road, Unit 1, Yaphank NY 11980-9710 Tel: (877) 447-6266 (Toll-Free in US) or (631) 205-9490 Fax: (631) 205-9493 Tech Support: (631) 205-9492 <u>tech@nanoprobes.com</u> www.nanoprobes.com

PRODUCT INFORMATION

Product Name:	FerroMag [™] 10 nm PEG stabilized iron oxide (II, III) magnetic nanoparticle solution
Catalog Number:	9010, 9010A
Quantity:	1 mL (concentration 5 mg Fe/mL)
Appearance:	Dark brown solution
Storage:	Upon receipt store product at \leq -20°C. Product is shipped at ambient temperature.
Revision:	2.0 (January 2018)

Introduction

FerroMagTM is a highly biocompatible, non-toxic formulation of surface-stabilized iron oxide (Fe₃O₄) magnetic nanoparticles (MNPs). The particles are very well tolerated (MTD50 > 1.0g Fe/kg body weight) and have been shown to be very active as a hyperthermia treatment for cancer therapy in mice¹. After EPR leakage into subcutaneous tumors, exposure to a localized alternating magnetic field (980 kHz and 38 kA/m) resulted in rapid heating of the tumors without significant heating of surrounding tissue, resulting in durable tumor ablation.

Contents

Each vial of FerroMagTM contains 5 mg of iron in the form of ~10 nm iron oxide (Fe₃O₄) nanoparticles (this is the weight of the iron, and does not include the weight of the oxygen atoms or surface-stabilizing ligand shell surrounding the magnetite core). It is supplied at a concentration of 5 mg Fe/mL in 1 mL water.

Physical Properties

The magnetic nanoparticles are brown to yellow-brown in color and soluble in aqueous solutions. They are also soluble in up to 50% acetone, which reduces surface tension for applying evenly to EM grids, as well as 50% DMF and 50% DMSO.

Storage

The product is shipped at ambient temperature. Store product -20° C or -80° C upon receipt. After thawing, the liquid product can be kept at 4°C for at least one month.

INSTRUCTIONS FOR USE

FerroMag[™] is supplied as a 5 mg Fe/mL solution in water. It can be diluted to the desired concentration in water, PBS or other common buffers. For long-term storage or concentrated solutions it is recommended to quick freeze in liquid nitrogen for storage at -20 or -80°C to avoid aggregation.

If desired, FerroMag[™] may be concentrated using using Amicon (Millipore) type filters (50,000 or 100,000 MWCO; low amounts of product will pass through 100,000 MWCO filters). Samples may become viscous near 150 mg/mL. Make 0.5X

in phosphate buffered saline (PBS: 20 mM phosphate, 150 mM NaCl, pH 7.4) for injection into animals using e.g. a 10 X PBS stock solution. Samples may become viscous near 150 mg Fe/mL. A sample in phosphate buffered saline (PBS: 20 mM phosphate, 150 mM NaCl, pH 7.4) is prepared for animal injection by adding e.g. 10X PBS stock. We recommend passing through a 0.2 µm filter immediately before injecting into animals. A typical volume for intravenous injection into a mouse (for example, into the tail vein) is 0.2 mL. Based on a dose of 1.7 g Fe/kg body weight¹, a 20 g mouse should be injected with approximately 35 mg of FerroMag[™] at 130 mg Fe/mL.

Reference

- 1. Huang, H. S., and Hainfeld, J. F.: Intravenous magnetic nanoparticle cancer hyperthermia. *Int. J. Nanomed.*, **8**, 2521-2532 (2013). doi: 10.2147/IJN.S43770. Epub 2013 Jul 17. PMID: 23901270.
 - Free full-text access in PubMed.
 - <u>See the video abstract on our web site</u>.

Technical Assistance Available.

For a complete list of references citing our FerroMag[™] products, please visit our world-wide-web site at:

http://www.nanoprobes.com/references/