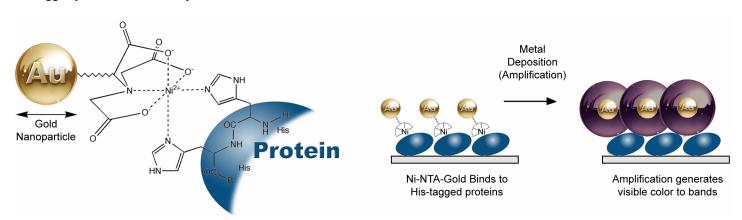

GoldiBlotTM His Western Blot Kit

95 Horseblock Road, Unit 1, Yaphank NY 11980-9710
Tel: (877) 447-6266 (Toll-Free in US) or (631) 205-9490 Fax: (631) 205-9493
Tech Support: (631) 205-9492 tech@nanoprobes.com
www.nanoprobes.com

PRODUCT INFORMATION

Product Name: GoldiBlotTM His Western Blot Kit


Catalog Number: 2090 and 2090A Revision: 1.0 (February 2008)

INTENDED USE

GoldiBlotTM His Western Blot Kit is intended and optimized for direct visualization of recombinant His-tagged proteins and other proteins bearing different histidine tags in western or dot blotting applications. Unlike detection by anti-6xHis antibodies, GoldiBlotTM His detection does not require a specific location of the polyhistidine tag (*N*- or *C*-terminus), does not need primary and secondary antibody incubations, or the presence of specific adjacent amino acid sequences.

PRINCIPLE OF GoldiBlotTM HIS WESTERN BLOT KIT

GoldiBlotTM His Western Blot Kit uses Ni-NTA (nickel-nitrilotriacetic acid)-functionalized gold nanoparticles to specifically bind to His-tagged proteins. ¹⁻⁶ With the autometallographic amplification subsequently applied to the gold nanoparticles, GoldiBlotTM allows the direct visualization of His-tagged proteins. GoldiBlotTM generates specific purple colored metallic bands or dots which do not fade and will not dissolve in water and organic solvents. The GoldiBlotTM His Western Blot Kit can detect nanogram levels of purified His-tagged proteins. The entire procedure takes about 1 hour.

(left) Ni-NTA-Gold, showing mechanism of binding to a polyhistidine (His) – tagged protein. (right) Principle of GoldiBlotTM: gold binding followed by autometalographic amplification (deposition of metal selectively onto the gold particles) generates visible signal.

Rev. 1.0 (2/08)

Rev. 1.0 (2/08) Page 2

REAGENTS PROVIDED

The following materials are sufficient for 15 mini-blots or 900 cm² of membrane

GoldiBlot™ Nickel-NTA-Gold	1.5 mL
GoldiBlot™ AutoMet Detect A	40 mL
GoldiBlot™ AutoMet Detect B	40 mL
GoldiBlot™ AutoMet Detect C	40 mL
GoldiBlot TM AutoMet Detect D	40 mL

MATERIALS REQUIRED, BUT NOT SUPPLIED

- 1. Tris Buffered Saline Tween® -20 (TBST): 20 mM Tris, 0.15 M NaCl, pH7.6, 0.1% (w/v) Tween® -20
- 2. 5 % (w/v) nonfat dried milk in TBST
- 3. Tris Buffered High Salt Saline Tween[®] -20 (TBST-High NaCl): 20 mM Tris, 1.5 M NaCl, pH7.6, 1% (w/v) Tween[®] -20
- 4. 1 % (w/v) nonfat dried milk in TBST-High NaCl
- 5. 10 mM imidazole in TBST-High NaCl

STORAGE

Refrigerate at 4°C. The product is shipped at ambient temperature.

PROCEDURE FOR DETECTION OF POLYHISTIDINE-TAGGED PROTEINS

Note: Volumes indicated below are for one 7 x 8.4 cm² blot. Volumes can be adjusted for staining multiple blots or for different sized blots.

All GoldiBlotTM reagents and other required materials should be equilibrated to room temperature prior to the blotting procedure. All incubations of the GoldiblotTM western blotting should be performed at room temperature with gentle shaking, preferably using an orbital shaker to ensure that the membrane remains immersed.

- 1. Transfer protein from gel to a PVDF membrane.
 - *Note*: Although other membranes can be used, optimization may be required.
- 2. Place the membrane in a tray and equilibrate with TBST for 2 minutes.
- 3. Block the membrane with 5 % (w/v) nonfat dry milk in TBST for 12 minutes.
- 4. Place the membrane in 10 mL of 1 % (w/v) nonfat dried milk in TBST-High NaCl. Add 0.1 mL of GoldiBlot™ Nickel-NTA-Au to the 10 mL of Milk/TBST-High NaCl. Incubate the blot for 20 minutes.
- 5. Wash the membrane three times with 15 mL of 10 mM imidazole in TBST-High NaCl for 3 minutes each.
- 6. Wash the membrane three times with 15 mL of deionized water for 3 minutes each.
- 7. Before starting the last deionized water wash, mix 2.5 mL GoldiBlot™ AutoMet Detect A with 2.5 mL B in a clean 15 mL container. After 5 minutes, add 2.5 mL C and 2.5 mL D to the mixture of A and B, and mix. Incubate the blot with 10 mL of the ABCD mixture for 6 to 15 minutes, or until satisfactory staining is reached.
 - *Note*: The incubation time of GoldiBlot™ AutoMet Detect ABCD depends on the quantities of His-tagged proteins loaded. The bands loaded with more than 100 ng His-tagged proteins can be seen within 6 minutes. Longer incubation time may be needed in order to see less than 20 ng His-tagged proteins. However, longer incubation may lead to the visualization of some non specific background bindings.
- 8. Wash the membrane three times with 15 mL of deionized water for 3 minutes each to terminate the autometallographic amplification.

Note: any light purple color membrane background will fade away as the membrane dries out.

Rev. 1.0 (2/08) Page 3

9. Air-dry the membrane.

Note: The concentration of NaCl and Tween 20 in TBST-High NaCl (used in GoldiBlot™ Nickel-NTA-Au binding and imidazole washes) can be slightly adjusted to achieve an optimized signal-to-noise ratio. Less NaCl and Tween-20 can enhance the band intensity of His-tagged proteins, and higher NaCl and Tween 20 help reduce the non specific background staining.

REFERENCES

- 1. Hochuli, E.; Dobeli H, Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. *J. Chromatograph.*, **411**, 177-184 (1987).
- 2. Schmitt, J.; Hess, H., and Stunnenberg, H. G.: Affinity purification of histidine-tagged proteins. *Molecular Biology Reports*, **18**, 223-230 (1993).
- 3. Hainfeld, J. F.; Liu, W.; Halsey, C. M. R.; Freimuth, P., and Powell, R. D.: Ni-NTA-Gold clusters target His-tagged proteins. J. Struct. Biol., 127, 185-198 (1999).
- 4. Collins, R. F.; Beis, K.; Clarke, B. R.; Ford, R. C.; Hulley, M.; Naismith, J. H.; and Whitfield, C.: Periplasmic protein-protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. *J. Biol. Chem.*, **281**, 2144-2150 (2006).
- 5. Wolfe, C. L.; Warrington, J. A.; Treadwell, L., and Norcum, M. T.: A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. *J. Biol. Chem.*, **280**, 38870-38878 (2005).
- 6. Bumba, L.; Tichy, M.; Dobakova, M.; Komenda, J., and Vacha, F.: Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged NiNTA Nanogold labeling. *J. Struct. Biol.*, **152**, 28-35 (2005).